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ABSTRACT 

 

Recently, the European Centre for Medium-Range Weather Forecasts (ECMWF) 

produced a reforecast data set for a 2005 version of their ensemble forecast system.  The 

data set consisted of 15-member reforecasts conducted for the 20-year period 1982-2001, 

with reforecasts computed once weekly from 1 September – 1 December.   This data set 

was less robust than the daily reforecast data set produced for the National Centers for 

Environmental Prediction (NCEP) Global Forecast System (GFS), but it utilized a much 

higher-resolution, more recent model.  This manuscript considers the calibration of 2-

meter temperature forecasts using these reforecast data sets as well as samples of the last 

30 days of training data.  Nonhomogeneous Gaussian regression was used to calibrate 

forecasts at stations distributed across much of North America. It was observed that: (1) 

though the “raw” GFS forecasts (probabilities estimated from ensemble relative 

frequency) were commonly unskillful measured in continuous ranked probability skill 

score (CRPSS), after calibration with a 20-year set of weekly reforecasts, their skill 

exceeded those of the raw ECMWF forecasts.  (2) Statistical calibration using the 20-year 

weekly ECMWF reforecast data set produced a large improvement relative to the raw 

ECMWF forecasts; the ~ 4-5 day calibrated reforecast-based product had a CRPSS as 

large as a 1-day raw forecast. (3) A calibrated multi-model GFS / ECMWF forecast 

trained on 20-year weekly reforecasts was slightly more skillful than either the individual 

calibrated GFS or ECMWF reforecast products. (4) Approximately 60-80 percent of the 

improvement from calibration resulted from the simple correction of time-averaged bias. 

(5) Improvements were generally larger at locations where the forecast skill was 
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originally lower, and these locations were commonly found in regions of complex terrain. 

(6) The past 30 days of forecasts were adequate as a training data set for short-lead 

forecasts, but longer-lead forecasts benefited from more training data. (7) A small but 

consistent improvement was produced by calibrating GFS forecasts using the full 25-

year, daily reforecast training data set versus the subsampled, 20-year weekly training 

data set. 
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1. Introduction 

 
 A series of recent articles have introduced the use of reforecasts for the calibration 

of a variety of probabilistic weather-climate forecast problems, from week-2 forecasts 

(Hamill et al. 2004; Whitaker et al. 2006) to short-range precipitation forecast calibration 

(Hamill et al. 2006, Hamill and Whitaker 2006) to forecasts of approximately normally 

distributed fields such as geopotential and temperature (Wilks and Hamill 2007, Hamill 

and Whitaker 2007) to streamflow predictions (Clark and Hay 2004). The reforecast data 

set used was a reduced resolution, T62, 28-level, circa-1998 version of the Global 

Forecast System (GFS) from the National Centers for Environmental Prediction.   

Fifteen-member forecasts were available to 15 days lead for every day from 1979 to 

current.  With a stable data assimilation and forecast system, the systematic errors of the 

forecast could be readily diagnosed and corrected.  Calibration using reforecasts were 

able to adjust the forecasts to achieve substantial improvements in the skill and reliability 

of the forecasts, commonly to levels competitive with or exceeding those achieved by 

current-generation ensemble forecast systems without calibration. 

 
The GFS model version used in these reforecast studies is now ~10 years out of 

date, and the reforecasts and real-time forecasts from it are run at a resolution far less 

than that used currently at operational weather prediction centers.  Arguably, the dramatic 

improvement from the use of reforecasts may be due in large part to the substantial 

deficiencies of this forecast modeling system.    Would the calibration of a modern-

generation ensemble forecast system similarly benefit from the use of reforecasts? 
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 Recently, the European Centre for Medium-Range Weather Forecasts (ECMWF) 

produced a more limited reforecast data set with a model version that was operational in 

the last half of 2005.  They produced a 15-member reforecast once weekly from 1 

September to 1 December, over a 20-year period from 1982 to 2001.  Each forecast was 

run to 10 days lead using a T255, 40-level version of the ECMWF global forecast model.  

During the past decade, ECMWF global ensemble forecasts have consistently been the 

most skillful of those produced at any national center (e.g., Buizza et al. 2005), so 

calibration experiments with this model may be representative of the results that other 

centers may obtain with reforecasts over the next 5 years or so. 

 
 This data set allows us to ask and answer questions about reforecasts that were not 

possible with only the GFS data set.  Some relevant questions include: (1) how does an 

old GFS model forecast that has been statistically adjusted with reforecasts compare with 

a probabilistic forecast estimated directly from the state-of-the-art ECMWF ensemble 

forecast system? (2) If this state-of-the-art system could also be calibrated using its own 

reforecast, would there still be substantial benefits from the calibration, or would they be 

much diminished relative to the improvement obtained with the older GFS forecast 

model? (3) Is a calibrated, multi-model combination more skillful than that provided 

solely by the ECMWF system? (4) How much of the benefits of calibration in a state-of-

the-art model can be obtained using only a short time series of past forecasts and 

observations? 
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 This article will consider the problem of the calibration of probabilistic calibration 

of 2-meter temperature forecasts.  A companion article (Hamill et al. 2007) will discuss 

the calibration of 12-hourly accumulated precipitation forecasts.    The calibration 

problems for each are unique; as will be shown, temperature forecasts tend to have more 

Gaussian errors and substantial improvements can be obtained with relatively modest 

training data sets.  Calibration of non-normally distributed precipitation is more difficult, 

and larger samples tend to be needed to calibrate the more rare events. 

 
 Below, section 2 will review the data sets used in this experiment.  Section 3 

describes the calibration methodology and the methods for evaluating forecast skill.  

Section 4 provides results, and section 5 provides conclusions. 

 
2.  Forecast and observational data sets used. 

 
a. ECMWF forecast data. 

 
 The ECMWF reforecast data set consists of a 15-member ensemble reforecast 

computed once weekly from 0000 UTC initial conditions for the initial dates of 1 

September to 1 December.  The years covered in the reforecast data set were from 1982 

to 2001.   The model cycle 29r2 was used, which was a spectral model with triangular 

truncation at wavenumber 255 (T255) and 40 vertical levels using a sigma coordinate 

system.  Each forecast was run to 10 days lead.  The 15 forecasts consisted of an ERA-40 

reanalysis initial condition (Uppala et al. 2005) plus 14 perturbed forecasts generated 

using the singular-vector methodology (Molteni et al. 1996; Barkmeijer et al. 1998, 

1999).  While data is available to cover the entire globe, for this study the model forecasts 
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were extracted on a 1-degree grid from 135 to 45 degrees west longitude and 15 to 75 

degrees north latitude.  This covered the conterminous US and most of Canada. From this 

1-degree grid, forecasts were bilinearly interpolated to the observation locations, 

described below. 

 
 In addition, the ECMWF 0000 UTC forecasts in the year 2005 were extracted for 

every day from 1 July to 1 December.  This additional data permits experiments 

comparing short training data sets with the reforecasts.  2005 forecasts were initialized 

with the operational 4-dimensional variational data assimilation system (Mahfouf and 

Rabier 2000), rather than the 3-dimensional variational analysis of ERA-40. 

 
b. GFS forecast data. 

 
 The GFS reforecast data set, more completely described in Hamill et al. (2006) 

was utilized here.  It utilizes a T62, 28 sigma-level, circa-1998 version of the GFS.   

Fifteen-member forecasts are available to 15 days lead for every day from 1979 to 

current.  Forecasts were started from 0000 UTC initial conditions, and forecast 

information was archived on a 2.5-degree global grid. GFS forecast data was also bi-

linearly interpolated to surface-observation locations.  For most of the experiments to be 

described here, the GFS reforecasts will be sub-sampled to the dates of the ECMWF 

reforecast data set, to permit ease of comparison.  However, some experiments will 

utilize a 25-year (1979-2003), every-day samples of reforecast training data. 

 
c. 2-m temperature observations. 
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 0000 UTC and 1200 UTC 2-meter temperature observations were extracted from 

the National Center for Atmospheric Research (NCAR) data set DS472.0.  Only 

observations that were within the domain of the ECMWF reforecast data set as described 

above were used.  Additionally, only the stations that had 96 percent or more of the 

observations present over the 20-year period were utilized.  A plot of these 439 station 

locations is provided in Fig. 1.  

 
3. Calibration and validation methodologies. 
 

a. Calibration with non-homogeneous Gaussian regression. 

 
 Many methods may be used for the calibration of two-meter temperature 

forecasts; among those in the recent literature are rank-histogram techniques (Hamill and 

Colucci 1998, Eckel and Walters 1998), ensemble dressing (Roulston and Smith 2003, 

Wang and Bishop 2005), Bayesian model averaging (Raftery et al. 2005), logistic 

regression (Hamill et al. 2006), analog techniques (Hamill and Whitaker 2007), and non-

homogeneous Gaussian regression (Gneiting et al. 2005).  Wilks and Hamill (2007) 

provide an inter-comparison of several of these techniques.  In the inter-comparison, non-

homogeneous Gaussian regression was determined to be more skillful or nearly as skillful 

as the other candidate techniques.  Accordingly, we shall use it as the calibration 

technique of choice here. 

 
 Non-homogeneous Gaussian regression (NGR) is an extension to conventional 

linear regression. It was assumed that there may be information about the forecast 

uncertainty provided by the ensemble sample variance (Whitaker and Loughe 1998). 
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However, due to the limited number of members and other system errors, the ensemble 

sample variance may not properly estimate by itself the forecast uncertainty.  

Accordingly, the regression variance was allowed to be non-homogeneous (not the same 

for all values of the predictor), unlike linear regression. In this implementation of NGR, 

the mean forecast temperature and sample variance interpolated to the station location 

were predictors, and observed 2-meter temperature at station locations were the 

predictands.  We assumed that stations had particular regional forecast biases sometimes 

distinct from those at nearby stations. Hence, the training did not composite the data, i.e., 

the fitted parameters at Atlanta were determined only from Atlanta forecasts and not from 

a broader sample of locations around and including Atlanta.   

 
To describe NGR more formally, let ~N (α, β) denote that a random variable has 

a Gaussian distribution with mean α  and variance β.  Let x
ens

denote the interpolated 

ensemble mean and s
ens

2 denote the ensemble sample variance.   Then NGR estimated 

regression coefficients a, b, c, d  so as to fit N(a+b x
ens

, c+d s
ens

2 ).  When d = 0, there was 

no spread-error relationship in the ensemble, and the resulting distribution resembled the 

form of linear regression, with its constant-variance assumption. Following Gneiting et 

al. (2005), the four coefficients were fit iteratively to minimize the continuous ranked 

probability score (e.g., Wilks 2006). 

 
In all experiments using the weekly reforecast data, cross validation was utilized 

in the regression analysis.  The year being forecast was excluded from the training data, 

e.g., 1983 forecasts were trained with 1982 and 1984-2001 data.  Also, because biases 

can change with the seasons, the full September-December data was not used as training 
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data.  Rather, only the 5 weeks centered on the date of interest were used, e.g., when 

training for 15 September, the training data was comprised of 1, 8, 15, 22, and 29 

September forecasts. For dates at the beginning and end of the reforecast, a non-centered 

training data set was used; for example, the training dates for 1 September were 1, 8, and 

15 September.  Unless otherwise noted, the GFS reforecast data was sub-sampled to the 

same weekly dates of the ECMWF training data set.  However, some latter experiments 

will include a comparison with forecasts trained using daily GFS reforecast data from 

1979-2003. 

 
A slightly more complicated version of NGR was used for production of a 

calibrated multi-model ECMWF/GFS forecast.  The first step was to perform a linear 

regression analysis of each model’s ensemble-mean forecast against the observations 

separately for each forecast lead time.  The result was an equation to predict the lowest 

RMS error forecast from each system’s raw ensemble-mean forecast. Denote this 

corrected mean forecast as x
EC
(k,l)  from the ECMWF model for the kth of K training 

samples and lth of L locations, and similarly x
GFS
(k,l)  for the GFS.  Denote the deviation 

of the ith of m ECMWF members from its mean as x
EC

i '
(k,l) , and similarly x

GFS

i '
(k,l)  for 

the GFS.  Let D
EC

2 denote the average squared difference between the regression-

corrected ECMWF ensemble-mean forecast and observations:   

 

D
EC

2
(l) =

1

K
x
EC
(k,l) ! o(k,l)( )

2  ,     (3) 

 
where o(k,l) is the observation.  The squared difference for the GFS, D

GFS

2
(l) , is similarly 

defined.   
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We now seek to determine a multi-model weighted mean forecast and sample 

variance, providing larger weights to the forecasts with the smaller squared differences. 

The weight to apply to the ECMWF forecasts (Daley 1991, eq. 2.2.3) is defined as 

 

 W
EC
(l) =

D
GFS

2
(l)

D
GFS

2
(l) + D

EC

2
(l)

  ,     (4)  

 
and WGFS = 1.0 - WEC .  A weighted multi-model ensemble mean was calculated as 

 

 x
MM
(k,l) =W

EC
(l) x

EC
(k,l) +W

GFS
(l) x

GFS
(k,l)  ,   (5) 

 

and a weighted multi-model ensemble variance was calculated as  

 

 s
MM

2
(k,l) =W

EC
(l)

x
EC

i '
(k,l)( )

2

i=1

m

!

m "1
+W

GFS
(l)

x
GFS

i '
(k,l)( )

2

i=1

m

!

m "1
 . (6) 

 
These multi-model means and sample variances are then input into the NGR to produce 

the regression coefficients a, b, c, and d.  A given forecast day’s ensemble forecasts were 

processed using the same procedure as the training data (eqs. 4 – 6) to produce a multi-

model mean and sample variance, and the regression coefficients were applied to 

determine the parameters of the fitted NGR distribution. 

 
b. Validation procedures. 

 
 1) RANK HISTOGRAMS 
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 Reliability characteristics of the probabilistic forecasts were diagnosed with rank 

histograms (Hamill 2001).  When generating rank histograms for the “raw” unmodified, 

forecasts, random, normally distributed noise with a magnitude of 1.5 C was added to 

each member to account observation and representativeness error (ibid, section 3c).  The 

choice of 1.5 C was somewhat arbitrary, but was generally consistent with the 

observation errors assigned to surface data in data assimilation schemes (Parrish and 

Derber 1992).  Probably somewhat less random error should be added to the ECMWF 

forecasts than to the GFS forecasts, since the ECMWF grid spacing is smaller, lessening 

the representativeness error.  Lacking guidance, however, the random error was set the 

same for both forecasts. 

 
Rank histograms assess the rank of the observed relative to ensemble member 

forecasts, i.e., the observed rank is relative to discrete samples from a pdf rather than the 

pdf itself.  How then can the rank histogram be used to assess the reliability of a fitted 

pdf?  We used the following approach, motivated by the probability integral transform 

(Casella and Berger, 1990, p. 52). The original ensembles were comprised of m=15 

members, so we constructed 15 sample members where the value of the ith fitted member 

was defined as x fit i( ) = qi / m+1( ) , the i/(m+1)th quantile of the fitted distribution. The m 

constructed ensemble members defined the boundaries between m+1 equally probable 

bins under the null hypothesis that the observed was a random draw from the same 

underlying distribution as the ensemble.  

 



 13 

The x fit i( )was re-mapped from the i / (m+1) th quantile q
i / m+1( )

N of a standard 

normal distribution. Specifically, given the coefficients a, b, c, and d that define the fitted 

forecast for this sample, then 

 
x fit (i) = qi /(m+1)

N
c + dsens

2( ) + a + bxens( )      (7) 

 
(Wilks 2006, eq. 4.25).  The rank of the observed relative to xfit(1) … xfit(m) was 

computed, and the process was repeated for all forecast samples to generate the rank 

histogram.  Because the underlying fitted distribution was determined by training against 

real, imperfect observations, there was no need to perturb the ensemble members with 

observation noise, as was done with the raw ensemble. 

 
 2) SPREAD, ERROR, AND FRACTIONAL BIAS 
 
 

Ideally, an ensemble forecast system ought to have a similar magnitude of its 

spread and root-mean-square (RMS) error (e.g., Whitaker and Loughe 1999).  Plots of 

averages of these quantities are shown later, where the ECMWF’s model spread at a 

given lead time σEC is defined as  

 

!
EC

=
1

KL
x
EC

i '
(k,l)"

#
$
%

k=1

K

&
2

l=1

L

&
'
(
)

*)

+
,
)

-)

1/2

,      (8) 

 
the RMS error RMSEC is defined as 
 
 

 RMS
EC

=
1

KL
x
EC
(k,l) ! o(k,l)[ ]

k=1

K

"
2

l=1

L

"
#
$
%

&%

'
(
%

)%

1/2

.     (9) 
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Fractional bias BFEC is used to diagnose how much of the ensemble-mean forecast error 

can be attributed to bias, as opposed to random error.  It is defined as  

 
 

 BF
EC

=

x
EC
(k,l) ! o(k,l){ }

k=1

K

"
l=1

L

"

x
EC
(k,l) ! o(k,l){ }

k=1

K

"
l=1

L

"
  .    (10) 

 
 
Spread σGFS, error RMSGFS, and fractional bias BFGFS of the GFS forecasts are similarly 

defined. 

 
 3) CONTINUOUS RANKED PROBABILITY SKILL SCORE 
 
 
 Calculation of a revised version of the continuous ranked probability skill score 

(CRPSS) followed the method described in Hamill and Whitaker (2007).  As noted in 

Hamill and Juras (2006), the conventional method of calculating many verification 

metrics, including the CRPSS, can provide a misleadingly optimistic assessment of the 

skill if the climatological uncertainty varies among the samples.  The verification metric 

may diagnose positive skill that can be attributed to a difference in the climatologies 

amongst samples rather than any inherent forecast skill.  Here we followed the specific 

method outlined in Hamill and Whitaker (2007) to ameliorate this problem.  The idea was 

simple: divide the overall forecast sample into subgroups where the climatological 

uncertainty was approximately homogeneous; determine the CRPSS for each subgroup, 

and then determine the final CRPSS as a weighted average of the subgroups’ CRPSS.  

Here, there were NC=8 subgroups, with a more narrow range of  climatological 

uncertainty in each subgroup, and equal numbers of samples assigned to each subgroup.  
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Let CRPS
f

s( )  denote the average forecast continuous ranked probability score (CRPS; 

Wilks 2006) for the sth subgroup, and CRPS
c

s( )  denote the average CRPS of the 

climatological reference forecast for this subgroup.  Then the overall CRPSS was 

calculated as  

 

CRPSS =
1

NC
1!

CRPS
f

s( )

CRPS
c

s( )

"

#
$

%

&
'

s=1

NC

(  .     (11) 

 
The climatological mean and standard deviation were calculated using 5 weeks of 

centered data.  For more details on the calculation of the alternative formulation of the 

CRPSS, please see Hamill and Whitaker (2007). 

 
 Confidence intervals for assessing the statistical significance of differences 

between forecasts was done following the block bootstrap procedure outlined in Hamill 

(1999).  4000 iterations of a resampling procedure were used, shuffling the data in blocks 

of case days.  The CRPSS was computed using eq. (10) for the two resampled sets, and 

the difference in CRPSS was used to build up the distribution for the null hypothesis.  

Confidence interval data will not be plotted here; for the 20-year ECMWF reforecast 

experiments, the 95 percent confidence intervals for calibrated vs. raw ensembles were 

small, from +/- 0.033 at the half-day lead to +/- 0.02 at the 10-day lead. 

 
4. Results. 

 
a.  20-year weekly training data. 
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 Figure 2 provides rank histograms for the ECMWF and GFS reforecasts.  For the 

raw forecasts the common U shape was more pronounced at the short leads and slightly 

more pronounced for GFS forecasts than ECMWF forecasts.  After calibration with 

NGR, the rank histograms were much flatter, though there still was some slight excess of 

population of the lowest rank.  Probably the assumption of Gaussianity underlying the 

NGR was not strictly appropriate; while perhaps forecast probability density functions 

(pdfs) may have somewhat more Gaussian distributions than climatology, notably 416 of 

the 439 stations exhibited a negative skew of their observed 2-meter temperature 

distributions. 

 
 The general similarity of the rank histogram shapes from the ECWMF and GFS 

ensembles may be somewhat misleading about the characteristics of these ensembles.  

Figure 3 provides a plot of average spreads (the standard deviations of the ensembles 

about their means; eq. 8) and the root-mean-square (RMS) errors (eq. 9) from the raw 

ensembles.  In a perfect ensemble forecast where ensemble spread is due solely to chaotic 

growth of initial condition errors, these two curves should lie on top of each other.  

Neither the ECMWF nor the GFS ensembles had spread nearly as large as the RMS error, 

indicating that model biases were large.  However, the RMS error of the ECMWF 

ensemble was substantially smaller than that of the GFS, indicating that its forecasts 

should have higher skill. 

 
 We now consider the overall CRPSS of the calibrated and uncalibrated forecasts 

in Fig. 4.  Several main points can be made.  First, as suggested by Fig. 3, the raw 

ECMWF forecasts were indeed more skillful than the GFS forecasts.  Second, while the 
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raw GFS forecasts had zero or negative skill relative to climatology, after statistical 

correction with NGR they exceeded the CRPSS of the raw ECMWF forecasts, 

demonstrating the large skill improvement that was possible with calibration.  Third, even 

though the ECMWF model started with substantially greater skill than the GFS, it too 

benefited greatly from the statistical correction.  Though improvements were not as large 

as with the GFS, a statistically modified 4-5-day ECMWF forecast had approximately the 

same CRPSS as did the raw 1-day forecast.   Fourth, consider the multi-model NGR 

forecast.  It consistently out-performed the calibrated ECMWF forecast by a small 

amount, indicating that there was some independent information provided by the older, 

less sophisticated GFS.   This is consistent with many previous results from the 

combination of information from multiple models using smaller training data sets (e.g., 

Vislocky and Fritsch 1995, 1997, Krishnamurti  et al. 1999).  Last, note that even at day 

10 there is still some skill in the calibrated ECMWF and multi-model forecasts.  If one 

considers averages over several days such as an 8-10 day average the skill increases 

above that of the averages of the skills at days 8, 9, and 10 (not shown).  This is because 

some of the loss of skill is due to small errors in the timing of events.  

 
 Figure 5 demonstrates that a substantial fraction of the forecast improvement in 

each system can be attributed to a simple correction of model bias.  The bias-corrected 

ensemble forecasts were generated by subtracting the mean bias (forecast minus 

observed) from each ensemble member in the training sample.  Between 60 and 80 

percent of the improvement in skill in the ECMWF forecasts can be attributed to this 

simple bias correction; the NGR added the remaining 20-40 percent through its 

regression-based correction, spread correction, and fitting of a smooth parametric 
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distribution.  Slightly less of the improvement was attributable to bias for the GFS 

ensemble. 

 
 Figures 6 (a) - (c) shows the geographic distributions of day-2 skill for the raw, 

NGR, and bias-corrected forecasts, respectively.  The raw forecasts were commonly 

deficient in skill in the complex terrain of the western US and Canada, presumably 

because the simplified terrain heights of the forecast model differed from that of the 

actual stations, with concomitant errors in the estimation of surface temperatures.  It 

appeared that a simple bias correction achieved most of the impact for the stations with 

particularly unskillful raw forecasts.  This was demonstrated in Fig. 6(d).  Here, the 

fractional improvement of the bias correction is plotted as a function of the raw and 

calibrated forecasts.  Letting CRAW denote the CRPSS of the raw forecast, CNGR for the 

calibrated forecasts, and CBC for the bias-corrected forecasts, the fractional improvement 

Fr is (CBC – CRAW ) / (CNGR – CRAW ) .  Figure 6(d) shows several interesting 

characteristics.  First, note that the effect of the NGR calibration was primarily to 

improve forecasts that started off particularly unskillful, homogenizing the resultant skill 

relative to the highly varying skills seen in the raw forecasts.  Second, in general the 

locations that had relatively large improvements through the NGR calibration achieved a 

greater fraction of this from the bias correction than did the locations that had smaller 

improvements.  Overall, the large improvements from bias corrections may indicate that 

additional resolution may be helpful, leading to smaller mismatches between model 

terrain height and station elevation (see also Buizza et al. 2007).  

 

b. Differences between 20-year weekly and 30-day daily training data sets. 
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 To facilitate a comparison of long and short training data sets, the ECMWF and 

GFS ensemble forecasts were also extracted every day for the period 1 September – 1 

December 2005.  This permitted us to examine the efficacy of a smaller training data set.  

Recent results (Stensrud and Yussouf 2005, Cui et al. 2006) have suggested that 

temperature forecast calibration may be able to be performed well even with a small 

number of recent forecasts.  This may be because the ensemble forecast bias is relatively 

consistent and can be estimated with a small sample.  Another possibility is that recent 

samples are more relevant for the statistical correction, with their more similar circulation 

regimes and land-surface states than data from other years. 

 
 Accordingly, we compared the calibration of forecasts using the prior 30 days as 

training data to calibration using the full reforecast training data set.  Forecasts were 

compared for the period of 1 October – 1 December 2005.  Non-homogeneous Gaussian 

regression was again used for the calibration.  Figure 7 shows that at short forecast leads, 

the 30-day training data set provided approximately equal skill improvements relative to 

the 20-year training data set for the ECMWF model, and marginally less for the GFS.  

However, as the forecast lead increased, then the benefit of the longer training data set 

becomes apparent.    

 
Why were more samples particularly helpful for the longer leads?  We suggest 

that there were at least three contributing factors.  First, the prior 30-day training data set 

was 9 days older for a 10-day forecast (training days -39 to -10) than for a 1-day forecast 

(training days -30 to -1).  If errors were synoptically dependent and a regime change took 

place in the intervening 9 days, the training set at 1-day lead will have had samples from 
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the new regime while the training set at 10-days lead will not.  The second reason is that 

determining the bias to a pre-specified tolerance will require more samples at the long 

leads than at the short leads.  At these long leads, the proportion of the error attributable 

to bias shrinks due to the rapid increase of errors due to chaotic error growth.  This is 

shown in Fig. 8; for the ECMWF model, this decreased from ~0.54 at the half-day lead to 

~0.28 at the 10-day lead.   Consequently, as the overall error grows as forecast lead 

increases and a larger proportion of it is attributable to random errors, determining the 

bias to a prespecified tolerance will require more samples, by central-limit theorem 

arguments.  The third reason was that the short-lead forecast training data sets were 

comprised of samples that tended to have more independent errors than the longer-lead 

training data sets.  The ECMWF 1-day lagged correlation of forecast minus observed 

averaged over all stations (not shown) increased from around 0.2 at the early leads to 0.5 

at the longer leads.  Using the definition of an effective sample size n’ (Wilks 2006, p. 

144) 

 

 n ' = n
1!"

1

1+"
1

,        (12)  

 
with n=30, this indicated that the effective sample size was approximately 20 at the short 

leads and 10 at the longer leads.  The once-weekly, 20-year reforecast data set should, in 

comparison, be comprised of samples that were truly independent of each other. 

 
 Considering again the puzzling result of similar skill at short leads, we 

hypothesize that the two factors here may have contributed to underestimating the 

potential skill that can be obtained with a properly constructed long training data set.  
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First, one limitation of the ECMWF data sets was that for the 2005 data, all forecasts 

were initialized 4D-Var, while the 1982-2001 reforecast data were initialized with 3D-

Var.  It is thus possible that the ECMWF short-term reforecasts may have subtly different 

biases than the 2005 real-time forecasts, differences that diminish with the forecast lead.  

This would affect the calibration of the short-term forecasts. Notice that Fig. 7b shows a 

somewhat larger benefit from long training data sets with the GFS, where a consistent 

data assimilation system was used.  Second, the calibration with the full reforecast 

training data set here used only the model-forecast temperature as a predictor.  Perhaps 

the short training data set benefits from having samples with a more similar set of land-

surface conditions.  If this were the case, then perhaps a multi-predictor regression 

analysis including, say, soil-moisture content as an additional predictor would improve 

the reforecast calibrations. 

 
c. Differences between 20-year weekly and 25-year daily training data sets in the GFS. 

 
 Figure 9 shows the CRPSS of GFS forecasts from the raw ensemble, after a 

calibration with the 20-year weekly training data set, and with the full 25-year daily 

training data set.  When training with the 25-year daily data, training data was used in a 

window of +/- 15 days around the date being forecast, e.g., 16 September forecasts used 1 

September – 1 October reforecasts for training data.  Data for the year being forecast was 

excluded (cross validation).  As Fig. 9 shows, there is a small but consistent difference 

the 25-year, daily training data set provides a small but consistent improvement over the 

20-year, weekly training data set.   Why isn’t the improvement larger?  First, of course, 

the baseline for the comparison used 20 years of weekly forecasts * 5 weeks of centered 
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data = 100 samples, a respectably large number for the estimation of the four NGR 

parameters.  Further, as noted in Hamill et al. (2004), forecast errors may be correlated 

from one day to the next, so using daily vs. weekly samples does not necessarily mean 

that the effective sample size (Wilks 2006, p. 144) will be seven times larger with daily 

samples.   

 
5. Conclusions 

 
 A prior series of articles (Hamill et al 2004, 2006, Hamill and Whitaker 2006, 

2007, Whitaker et al. 2006, Wilks and Hamill 2007) have discussed the benefit of 

calibrating probabilistic forecasts using the large training data sets from an ensemble 

reforecast data set from a 1998 version of the NCEP GFS.  This data set is now 10 years 

old, and it is not clear whether the large positive benefits from the large training data set 

would still occur with a newer, higher-resolution model with its reduced systematic 

errors.  Recently, ECMWF developed a limited reforecast data set consisting of a once-

weekly, 15-member reforecast for the period 1 September – 1 December 1982-2001.  

These forecasts were conducted using the model version operational in the second half of 

2005, a T255-resolution version of the forecast model.   While the once-weekly 

reforecasts were more sparse than the daily reforecasts from the GFS, the ECMWF 

reforecast data set still spanned two decades of diverse climatological regimes.  

Accordingly, we performed an analysis of the skill that can be gained from calibration of 

surface temperatures using these training data sets. 

 
 Both the ECMWF and GFS raw ensemble surface temperature forecasts were 

found to be biased and/or under-dispersive, noted by the excess populations of the 



 23 

extreme ranks in their rank histograms.  This tendency was more pronounced at the short 

forecast leads.  However, after calibration with non-homogeneous Gaussian regression 

(NGR), the rank histograms were flatter, though the lowest rank was still populated 

slightly more than was appropriate with a perfectly calibrated ensemble.   

  
 The skill of these forecasts was measured with a modified version of the 

continuous ranked probability skill score (CRPSS), with the computation adjusted to 

remove the tendency to award fictitious skill due to variations in the forecast climatology 

(Hamill and Juras 2006).   Climatology provided the no-skill reference.  Using this skill 

measure, the raw GFS ensemble forecasts had near zero to negative skill at all leads due 

to the presence of large forecast biases.  The ECMWF raw forecasts retained positive 

skill to approximately 8 days.   

 
After calibration with NGR, the post-processed GFS forecasts exceeded the skill 

of the uncalibrated ECMWF forecasts at all leads.  Here, the GFS training data was sub-

sampled to the same weekly, 20-year set of dates as in the ECMWF reforecast.   

However, the reforecast-based, calibrated ECMWF forecasts were much more skillful 

than both the GFS calibrated forecasts and the ECMWF uncalibrated forecasts, though 

the absolute amount of skill increase from calibration was smaller for ECMWF than for 

the GFS.  Nonetheless, the ECMWF skill improvement was substantial; for example, the 

skill of a calibrated, 4-5 day ECMWF forecast was comparable to the skill of an 

uncalibrated 1-day forecast.  Approximately 70 percent of the improvement of the 

ECMWF could be attributed to a simple correction of mean bias in the forecasts, with a 

slightly smaller percentage in the GFS.  The ECMWF raw forecasts were observed to 
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have particularly low skill at stations in the inter-mountain western US, perhaps due to 

larger mismatches between the model terrain and the station locations.   Calibration was 

particularly successful in increasing the skill at these stations.   Finally, a multi-model 

calibrated forecast was more skillful than either individual calibrated forecast. 

 
 The computation of an extensive reforecast data set is expensive, and a new 

reforecast data set may be needed each time a model change affects its systematic error 

characteristics.  If the same benefit could be achieved with a much smaller set of recent 

forecasts, this would make operational calibration much easier.  Accordingly, using 2005 

data, we compared the calibration using the 1982-2001 reforecasts to calibration using 

the most recent 30 samples of forecasts from 2005.   For the shorter forecast leads, the 

skill after calibration using this shorter training data set was very similar to that achieved 

with large reforecast data set.  We hypothesize that this benefit may be attributable to the 

more recent samples being more similar in their error characteristics than those from the 

reforecast data set, which samples other different years of data.  However, at longer leads, 

the reforecast data set produced more skillful calibrated forecasts than the 30-day training 

data set.  This was likely due to at least three reasons: first, 30 days of training data for 

the longer-lead forecasts were more separated from the actual forecast day of interest 

(e.g., calibrating a 10-day forecast, the most recent training sample is 10 days old, since 

verification is not yet available for the more recent forecasts).  Second, the number of 

samples necessary to estimate the bias to a prespecified tolerance generally increased 

with increasing forecast lead.  And third, for forecasts at the longer leads, the samples on 

adjacent days tended to have correlated forecast errors, reducing the effective sample 

size. 
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 While a daily reforecast data set was yet not available for the ECMWF model, the 

impact of daily vs. weekly samples could be evaluated with the GFS reforecast data set.  

Using a 25-year, daily reforecast vs. a 20-year weekly forecast produced a small but 

noticeable improvement.   

 
It is also possible that the calibration could be improved by including other 

predictors.   Here we considered only 2-meter temperature as a predictor.  Perhaps the 

reason the 30-day training data set shows such good results is that the training samples 

are from a regime with similar surface characteristics, such as soil moisture.  If so, then 

the performance of a multi-year reforecast could be enhanced by including soil moisture 

as an additional predictor.  An examination of the potential value of several other 

predictors may be useful before any operational implementation of a temperature-

calibration scheme. 

  
This article considered only the calibration of 2-meter temperature forecasts.  Our 

experience with precipitation calibration using the GFS reforecasts suggests that the 

benefit from calibration using short training data sets will be smaller than for 

temperature.  The companion article, Part II (Hamill et al. 2007) examines the calibration 

of ECMWF and GFS precipitation forecasts in more depth and provides substantial 

further evidence for the value of large training data sets, even with a state-of-the-art 

model.   Nonetheless, the value of large training data sets for temperature calibration was 

confirmed here, even for a current, state-of-the-art forecast model.  Short training data 

sets were adequate for the short-lead forecasts, but in order to achieve benefits at all 

forecast leads, the longer training data set proved useful.    
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Combined with the evidence in Part II and previous studies, there is now a 

growing body of literature indicating the potential utility of reforecast methodology for 

improving operational ensemble predictions.  
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FIGURE CAPTIONS 

 

Figure 1: Station locations where probabilistic 2-meter temperature forecasts are 

evaluated. 

 

Figure 2: Rank histograms for 2-meter temperatures from ECWMF and GFS ensembles 

at 1, 4, and 7 days lead.  Histograms denote the raw ensemble and solid lines the 

calibrated ensembles. 

 

Figure 3.  Average ensemble spread and root-mean-square error of 2-meter temperature 

forecasts from (a) ECMWF ensemble and (b) GFS ensemble. 

 

Figure 4: CRPSS of surface temperature forecasts with and without calibration. 

 

Figure 5:  CRPSS including bias-corrected ensemble forecasts for (a) ECMWF forecasts, 

and (b) GFS forecasts. 

 

Figure 6: (a) CRPSS of raw 2-day forecasts from the ECMWF model. (b) as in (a), but 

for calibrated NGR forecasts, (c) as in (a) but for bias-corrected forecasts.  (d) Fractional 

improvement Fr gained from bias correction as a function of the CRPSS from raw and 

NGR forecasts.  
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Figure 7:  Comparison of CRPSS using 30-day and 20-year training data sets for the 

period 1 October – 1 December 2005.  (a) ECMWF data, (b) GFS data. 

 

Figure 8:  Fractional bias, the fraction of the total RMS error that can be attributed to 

systematic error,  as a function of forecast lead. 

 

Figure 9:  CRPSS of GFS forecasts from raw ensemble, with 20-year weekly training 

data set, and 28-year daily training data set. 
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Figure 1: Station locations where probabilistic 2-meter temperature forecasts are 
evaluated. 
 

 
 
Figure 2: Rank histograms for 2-meter temperatures from ECWMF and GFS ensembles 
at 1, 4, and 7 days lead.  Histograms denote the raw ensemble and solid lines the 
calibrated ensembles. 
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Figure 3.  Average ensemble spread and root-mean-square error of 2-meter temperature 
forecasts from (a) ECMWF ensemble and (b) GFS ensemble. 
 
 

 
 
 

Figure 4: CRPSS of surface temperature forecasts with and without calibration. 
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Figure 5:  CRPSS including bias-corrected ensemble forecasts for (a) ECMWF forecasts, 
and (b) GFS forecasts.
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Figure 6: (a) CRPSS of raw 2-day forecasts from the ECMWF model. (b) as in (a), but 
for calibrated NGR forecasts, (c) as in (a) but for bias-corrected forecasts.  (d) Fractional 
improvement Fr gained from bias correction as a function of the CRPSS from raw and 
NGR forecasts.  



 37 

 
 
 
 
Figure 7:  Comparison of CRPSS using 30-day and 20-year training data sets for the 
period 1 October – 1 December 2005.  (a) ECMWF data, (b) GFS data. 
 
 
 
 
 

 
 
 

Figure 8:  Fractional bias, the fraction of the total RMS error that can be attributed to 
systematic error,  as a function of forecast lead. 
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Figure 9:  CRPSS of GFS forecasts from raw ensemble, with 20-year weekly training 
data set, and 28-year daily training data set. 

 
 


